Preview

Вестник дерматологии и венерологии

Расширенный поиск

Медикаментозная терапия с точки зрения влияния на морфофункциональные характеристики эпидермального барьера

https://doi.org/10.25208/0042-4609-2019-95-1-59-76

Полный текст:

Аннотация

Различные медикаментозные средства наружной и системной терапии способны оказывать значительное влияние на морфологические и физиологические характеристики человеческого эпидермиса и его барьерные свойства, что может влиять на течение кожных заболеваний и эффективность их лечения. В данном обзоре литературы анализируются данные о влиянии различных классов лекарственных средств на морфофункциональные характеристики эпидермального барьера и формулируются рекомендации, каким образом это может быть принято во внимание в клинической практике ведения пациентов с кожными заболеваниями.

Об авторе

Д. Д. Петрунин
ООО «ЛЕО Фармасьютикал Продактс»
Россия
к.м.н., менеджер по научно-медицинским вопросам


Список литературы

1. Хлебникова А. Н., Петрунин Д. Д., Молочков А. В. Липиды человеческого эпидермиса (фундаментальные сведения и клиническая имплементация): Учебно-методическое пособие. М.: МОНИКИ; 2015. 71 с.

2. Nishifuji K., Yoon J. S. The stratum corneum: the rampart of the mammalian body. Vet Dermatol. 2013 Feb;24(1):60–72.

3. Schempp C., Emde M., Wölfle U. Dermatology in the Darwin anniversary. Part 1: Evolution of the integument. J Dtsch Dermatol Ges. 2009 Sep;7(9):750–757.

4. Elias P., Feingold K., Fluhr J. The skin as an organ of protection. In: Friedberg I.M., Eisen A.Z., Wolff K., Austen K.F., Goldsmith L.A., Katz S.I. (eds) Dermatology in General Medicine. New York: McGraw Hill; 2003. P. 107–118.

5. Rothman S. Physiology and biochemistry of skin. Chicago, IL: University of Chicago Press; 1954. 64 p.

6. Kligman A. M. The biology of the stratum corneum. In: Montagna W. (ed.) The Epidermis. New York: Academic Press Inc.; 1964.

7. Эрнандес Е. И., Марголина А. А., Петрухина А. О. Липидный барьер кожи и косметические средства. М.: Косметика и медицина; 2005.

8. Kligman A. M. A brief history of how the dead stratum corneum became alive. In: Elias P.M., Feingold K.R. (eds) Skin Barrier. New York: Informa Healthcare Inc.; 2010. P. 15–24.

9. Feingold K. R. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res. 2007;48:2531–2546.

10. Burns D. A., Breathnach S. M., Cox N. H., Griffiths C. E. M. (eds) Rook’s Textbook of Dermatology. 8th edition. Chichester: Blackwell Publishing Ltd.; 2010.

11. Elias P. M. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol. 1983;80:44s–49s.

12. Lazo N. D., Meine J. G., Downing D. T. Lipids are covalently attached to rigid corneocyte protein envelopes existing predominantly as beta-sheets — a solid-state nuclear-magnetic-resonance study. J Inves Dermatol. 1995;105:296–300.

13. Swartzendruber D. C., Wertz P. W., Madison K. C., Downing D. T. Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol. 1987;88:709–713.

14. Marekov L. N., Steinert P. M. Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J Biol Chem. 1998;273:17763–17770.

15. Sandhoff R. Very long chain sphingolipids: tissue expression, function and synthesisю FEBS Lett. 2010;584:1907–1913.

16. Wertz P. W. Biochemistry of human stratum corneum lipids. In: Elias P., Feingold K. (eds). Skin Barrier. New York: Informa Healthcare Inc.; 2010. P. 33–42.

17. Weerheim A., Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch Dermatol Res. 2001;293:191–199.

18. Wertz P., Norlen L. “Confidence intervals” for the “true” lipid composition of the human skin barrier? In: Forslind B., Linberg M. (eds) Skin, Hair and Nails. Structure and Function. New York: Marcel Dekker Inc.; 2003. P. 85–106.

19. Janssens M., van Smeden J., Gooris G. S. et al. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J Invest Dermatol. 2011;131:2136–2138.

20. Long S. A., Wertz P. W., Strauss J. S. et al. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277:284–287.

21. Elias P. M., Williams M. L., Maloney M. E. J. A. et al. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J Clin Invest. 1984;74:1414–1421.

22. Zettersten E., Man M. Q., Sato J. et al. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J Invest Dermatol. 1998;111:784–790.

23. Bibel D. J., Aly R., Shah S., Shinefield H. R. Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol. 1993;73:407–411.

24. Wertz P. W., Downing D. T. Ceramidase activity in porcine epidermis. FEBS Lett. 1990;268:110–112.

25. Hannun Y. A., Loomis C. R., Merrill A. H. Jr. et al. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem. 1986;261:12604–12609.

26. Hatta I., Ohta N., Inoue K., Yagi N. Coexistence of two domains in intercellular lipid matrix of stratum corneum. Biochim Biophys Acta. 2006;1758:1830–1836.

27. Iwai I., Han H. M., den Hollander L. et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J Invest Dermatol. 2012;132:2215–2225.

28. Vaena de Avalos S., Jones J. A., Hannun Y. A. Ceramides. In: Nicolaou A., Kokotos G. (eds). Bioactive Lipids. Bridgwater: The Oily Press; 2004. P. 135–167.

29. Potts R. O., Francoeur M. L. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–499.

30. Steinert P. M., Cantieri J. S., Teller D. C., Lonsdale-Eccles J. D., Dale B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci USA. 1981;78:4097–4101.

31. Brown S. J., McLean W. H. One remarkable molecule: filaggrin. J Invest Dermatol. 2012 Mar;132(3 Pt 2):751–762.

32. Kezic S., Jakasa I. Filaggrin and Skin Barrier Function. Curr Probl Dermatol. 2016;49:1–7.

33. Sandilands A., Sutherland C., Irvine A. D., McLean W. H. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009 May 1;122(Pt 9):1285–1294.

34. Rawlings A. V., Harding C. R. Moisturization and skin barrier function. Dermatol Ther. 2004;17(Suppl 1):43–48.

35. Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J. et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res. 2012;53:2755–2766.

36. Green K. J., Simpson C. L. Desmosomes: New perspectives on a classic. J Invest Dermatol. 2007;127:2499–2515.

37. Delva E., Tucker D. K., Kowalczyk A. P. The desmosome. Cold Spring Harb Perspect Biol. 2009;1:a002543.

38. Kowalczyk A. P., Green K. J. Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci. 2013;116:95–118.

39. Johnson J. L., Najor N. A., Green K. J. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med. 2014 Nov 3;4(11):a015297.

40. Leclerc E. A., Huchenq A., Mattiuzzo N. R., Metzger D., Chambon P., Ghyselinck N. B. et al. Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J Cell Sci. 2009;122:2699–2709.

41. Amagai M., Stanley J. R. Desmoglein as a target in skin disease and beyond. J Invest Dermatol. 2012;132:776–784.

42. Grando S. A. Pemphigus autoimmunity: Hypotheses and realities. Autoimmunity. 2012;45:7–35.

43. Rawlings A. V., Voegeli R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 2013 Feb;351(2):217–235.

44. Niessen C. M. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007 Nov;127(11):2525–2532.

45. Schneeberger E. E., Lynch R. D. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–C1228.

46. Furuse M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156:1099–1111.

47. Effendy I., Maibach H. I. Detergent and skin irritation. Clin Dermatol. 1996;14(1):15–21.

48. Кутц Г. Косметические кремы и эмульсии. Состав. Получение. Методы испытаний. М.: Фирма Клавель : Косметика и медицина, 2004. 272 с.

49. Wolf R., Parish L. C. Effect of soaps and detergents on epidermal barrier function. Clin Dermatol. 2012;30(3):297–300.

50. Yanase K., Hatta I. Disruption of human stratum corneum lipid structure by sodium dodecyl sulphate. Int J Cosmet Sci. 2018;40(1):44–49.

51. Xian M., Wawrzyniak P., Rückert B., Duan S., Meng Y., Sokolowska M. et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138(3):890–893.e9.

52. Barba C., Alonso C., Martí M., Manich A., Coderch L. Skin barrier modification with organic solvents. Biochim Biophys Acta. 2016;1858(8):1935–1943.

53. Abrams K., Harvell J. D., Shriner D., Wertz P., Maibach H., Maibach H. I. et al. Effect of organic solvents on in vitro human skin water barrier function. J Invest Dermatol. 1993;101(4):609–613.

54. Goffin V., Letawe C., Piérard G. E. Effect of organic solvents on normal human stratum corneum: evaluation by the corneoxenometry bioassay. Dermatology. 1997;195(4):321–324.

55. Kao J. S., Fluhr J. W., Man M. Q., Fowler A. J., Hachem J. P., Crumrine D. et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol. 2003;120(3):456–464.

56. Tadicherla S., Ross K., Shenefelt P. D., Fenske N. A. Topical corticosteroids in dermatology. J Drugs Dermatol. 2009;8(12):1093–1105.

57. Sheu H. M., Lee J. Y., Chai C. Y., Kuo K. W. Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol. 1997;136(6):884–890.

58. Haapasaari K. M., Risteli J., Koivukangas V., Oikarinen A. Comparison of the effect of hydrocortisone, hydrocortisone-17-butyrate and betamethasone on collagen synthesis in human skin in vivo. Acta Derm Venereol. 1995;75(4):269–271.

59. Gebhardt C., Averbeck M., Diedenhofen N., Willenberg A., Anderegg U., Sleeman J. P. et al. Dermal hyaluronan is rapidly reduced by topical treatment with glucocorticoids. J Invest Dermatol. 2010;130(1):141–149.

60. Zhang W., Watson C. E., Liu C., Williams K. J., Werth V. P. Glucocorticoids induce a near-total suppression of hyaluronan synthase mRNA in dermal fibroblasts and in osteoblasts: a molecular mechanism contributing to organ atrophy. Biochem J. 2001;349(Pt 1):91–97.

61. Saarni H., Hopsu-Havu V. K. Inhibition of acid mucopolysaccharide synthesis by hydrocortisone, hydrocortisone 17-butyrate and betamethasone 17-valerate. Br J Dermatol. 1977;97(5):505–507.

62. Carr W. W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Pediatr Drugs. 2013;15:303–310.

63. Kyllonen H., Remitz A., Mandelin J. M., Elg P., Reitamo S. Effects of 1-year intermittent treatment with topical tacrolimus monotherapy on skin collagen synthesis in patients with atopic dermatitis. Br J Dermatol. 2004;150:1174–1181.

64. Бакулев А. Л, Кравченя С. С. Эффективность топической терапии такролимусом при атопическом дерматите у взрослых. Вестник дерматологии и венерологии. 2012;5:106–111.

65. Jiráková A., Rob F., Sečníková Z., Koblová K., Džambová M., Rajská Letal. Topical corticosteroids but not calcineurin inhibitors induced atrophy after four weeks. J Biol Regul Homeost Agents. 2015;29(3):701–706.

66. Chittock J., Brown K., Cork M. J., Danby S. G. Comparing the effect of a twice-weekly tacrolimus and betamethasone valerate dose on the subclinical epidermal barrier defect in atopic dermatitis. Acta Derm Venereol. 2015;95:653–658.

67. Hachem J. P., Houben E., Crumrine D., Man M. Q., Schurer N., Roelandt T. et al. Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol. 2006;126:2074–2086.

68. Dähnhardt-Pfeiffer S., Dähnhardt D., Buchner M., Walter K., Proksch E., Fölster-Holst R. Comparison of effects of tacrolimus ointment and mometasone furoate cream on the epidermal barrier of patients with atopic dermatitis. J Dtsch Dermatol Ges. 2013;11(5):437–443.

69. Круглова Л. С., Петрунин Д. Д. Влияние наружной противовоспалительной терапии на морфофункциональные характеристики эпидермального барьера. Оптимизация схем лечения атопического дерматита. Вестник дерматологии и венерологии. 2018;94(4):73–82.

70. Mandelin J., Remitz A., Reitamo S. Effect of oral acetylsalicylic acid on burning caused by tacrolimus ointment in patients with atopic dermatitis. Arch Dermatol. 2010;146(10):1178–1180.

71. Haussler M. R., Whitfield G. K., Kaneko I., Haussler C. A., Hsieh D., Hsieh J. C. et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98.

72. Gil Á., Plaza-Diaz J., Mesa M. D. Vitamin D: Classic and Novel Actions. Ann Nutr Metab. 2018;72(2):87–95.

73. Bikle D. D. Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord. 2012;13:3–19.

74. Bikle D. D. Vitamin D metabolism and function in the skin. Molecular and Cellular Endocrinology. 2011;347:80–89.

75. Kragballe K., Iversen L. Calcipotriol. A new topical antipsoriatic. Dermatol Clin. 1993;11(1):137–141.

76. Menter A., Korman N. J., Elmets C. A., Feldman S. R., Gelfand J. M., Gordon K. B. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 3. Guidelines of care for the management and treatment of psoriasis with topical therapies. J Am Acad Dermatol. 2009;60(4):643–659.

77. Segaert S., Shear N. H., Chiricozzi A., Thaçi D., Carrascosa J. M., Young H. et al. Optimizing Anti-Inflammatory and Immunomodulatory Effects of Corticosteroid and Vitamin D Analogue Fixed-Dose Combination Therapy. Dermatol Ther (Heidelb). 2017;7(3):265–279.

78. Norsgaard H., Kurdykowski S., Descargues P., Gonzalez T., Marstrand T., Dunstl G., Ropke M. Calcipotriol counteracts betamethasone-induced decrease in extracellular matrix components related to skin atrophy. Arch Dermatol Res. 2014;306:719–729.

79. Khalil S., Bardawil T., Stephan C. et al. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatolog Treat. 2017;28(8):684–696.

80. Del Rosso J. Q. Clinical relevance of skin barrier changes associated with the use of oral isotretinoin: the importance of barrier repair therapy in patient management. J Drugs Dermatol. 2013;12(6):626–631.

81. Jungersted J. M., Høgh J. K., Hellgren L. I., Jemec G. B., Agner T. Changes in skin barrier during treatment with systemic alitretinoin: focus on skin susceptibility and stratum corneum ceramides. Arch Dermatol Res. 2010;302(9):653–656.

82. Pullar J. M., Carr A. C., Vissers M. C. M. The Roles of Vitamin C in Skin Health. Nutrients. 2017;9(8).

83. Kishimoto Y., Saito N., Kurita K., Shimokado K., Maruyama N., Ishigami A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem Biophys Res Commun. 2013;430:579–584.

84. May J. M, Qu Z. C. Transport and intracellular accumulation of vitamin C in endothelial cells: Relevance to collagen synthesis. Arch Biochem Biophys. 2005;434:178–186.

85. Parsons K. K., Maeda N., Yamauchi M., Banes A. J., Koller B. H. Ascorbic acid-independent synthesis of collagen in mice. Am J Physiol Endocrinol Metab. 2006;290:1131–1139.

86. Ponec M., Weerheim A., Kempenaar J., Mulder A., Gooris G. S., Bouwstra J. et al. Theformation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Investig Dermatol. 1997;109:348–355.

87. Savini I., Catani M. V., Rossi A., Duranti G., Melino G., Avigliano L. Characterization of keratinocyte differentiation induced by ascorbic acid: Protein kinase C involvement and vitamin C homeostasis. J Investig Dermatol. 2002;118:372–379.

88. Uchida Y., Behne M., Quiec D., Elias P. M., Holleran W. M. Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J Investig Dermatol. 2001;117:1307–1313.

89. Kim K. P., Shin K. O., Park K., Yun H. J., Mann S., Lee Y. M. et al. Vitamin C stimulates epidermal ceramide production by regulating its metabolic enzymes. Biomol Ther. 2015;23:525–530.

90. Proksch E., Nissen H. P. Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation. J Dermatolog Treat. 2002;13:173–178.

91. Wollina U. Zur klinischen wirksamkeit von dexpanthenol. Kosm Med. 2001;4:180–184.

92. Ebner F., Heller A., Rippke F., Tausch I. Topical use of dexpanthenol in skin disorders. Am J Clin Dermatol. 2002;3(6):427–433.

93. Proksch E., de Bony R., Trapp S., Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J Dermatolog Treat. 2017;28(8):766–773.

94. Gehring W. Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol. 2004 Apr;3(2):88–93.

95. Tanno O., Ota Y., Kitamura N., Inoue S. Effects of niacinamide on ceramide biosynthesis and differentiation of cultured human keratinocytes. 3rd ASCS Conference Taipei, Taiwan, 1997.

96. Ertel K. D., Berge C. A., Mercurio M. G., Fowler T. J., Amburgey M. S. New facial moisturizer technology increases exfoliation without compromising barrier function. 58th Annual Meeting of the American Academy of Dermatology, San Francisco, 2000.

97. Mohammed D., Crowther J. M., Matts P. J., Hadgraft J., Lane M. E. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum. Int J Pharm. 2013;441(1–2):192–201.

98. Franzke C. W., Cobzaru C., Triantafyllopoulou A., Löffek S., Horiuchi K., Threadgill D. W. et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 2012;209:1105–1119.

99. Segaert S., Hermans C. Clinical signs, pathophysiology and management of cutaneous side effects of anti-tumor necrosis factor agents. Am J Clin Dermatol. 2017;18(6):771–787.

100. Takahashi T., Koga Y., Kainoh M. Anti-IL-12/IL-23p40 antibody ameliorates dermatitis and skin barrier dysfunction in mice with imiquimodinduced psoriasis-like dermatitis. Eur J Pharmacol. 2018;828:26–30.

101. Tawada C., Kanoh H., Nakamura M., Mizutani Y., Fujisawa T., Banno Y. et al. Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J Invest Dermatol. 2014;134(3):712–718.

102. Feingold K. R. The adverse effect of IFN gamma on stratum corneum structure and function in psoriasis and atopic dermatitis. J Invest Dermatol. 2014;134(3):597–600.

103. Sawada E., Yoshida N., Sugiura A., Imokawa G. Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: an implication for the disrupted barrier mechanism in atopic dermatitis. J Dermatol Sci. 2012;68(1):25–35.

104. Yuki T., Tobiishi M., Kusaka-Kikushima A., Ota Y., Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS One. 2016;11(9):e0161759.

105. Gutowska-Owsiak D., Schaupp A. L., Salimi M., Selvakumar T. A., McPherson T., Taylor S. et al. IL-17 downregulates filaggrin and affects

106. keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2):104–110.

107. Tan Q., Yang H., Liu E., Wang H. P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol Med Rep. 2017;16(6):8863–8867.

108. Hatano Y., Terashi H., Arakawa S., Katagiri K. Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol. 2005;124(4):786–792.

109. Totsuka A., Omori-Miyake M., Kawashima M., Yagi J., Tsunemi Y. Expression of keratin 1, keratin 10, desmoglein 1 and desmocollin 1 in the epidermis: possible downregulation by interleukin-4 and interleukin-13 in atopic dermatitis. Eur J Dermatol. 2017;27(3):247–253.

110. Omori-Miyake M., Yamashita M., Tsunemi Y., Kawashima M., Yagi J. In vitro assessment of IL-4- or IL-13-mediated changes in the structural components of keratinocytes in mice and humans. J Invest Dermatol. 2014;134(5):1342–1350.

111. Bao L., Mohan G. C., Alexander J. B., Doo C., Shen K., Bao J. et al. A molecular mechanism for IL-4 suppression of loricrin transcription in epidermal keratinocytes: implication for atopic dermatitis pathogenesis. Innate Immun. 2017;23(8):641–647.

112. Hönzke S., Wallmeyer L., Ostrowski A., Radbruch M., Mundhenk L., Schäfer-Korting M. et al. Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and ß-Defensins in Filaggrin-Deficient Skin Equivalents. J Invest Dermatol. 2016;136(3):631–639.

113. Strid J., McLean W. H. I., Irvine A. D. Too Much, Too Little or Just Enough: A Goldilocks Effect for IL-13 and Skin Barrier Regulation? J Invest Dermatol. 2016;136(3):561–564.

114. Mitamura Y., Nunomura S., Nanri Y., Ogawa M., Yoshihara T., Masuoka M. et al. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018;73(9):1881–1891.

115. De Benedetto A., Yoshida T., Fridy S., Park J. E., Kuo I. H., Beck L. A. Histamine and Skin Barrier: Are Histamine Antagonists Useful for the Prevention or Treatment of Atopic Dermatitis? J Clin Med. 2015;4(4):741–755.

116. Gschwandtner M., Mildner M., Mlitz V., Gruber F., Eckhart L., Werfel T. et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. 2013;68:37–47.

117. Ashida Y., Denda M., Hirao T. Histamine H1 and H2 receptor antagonists accelerate skin barrier repair and prevent epidermal hyperplasia induced by barrier disruption in a dry environment. J Invest Dermatol. 2001;116(2):261–265.

118. Lin T. K., Man M. Q., Santiago J. L., Park K., Roelandt T., Oda Y. et al. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol. 2013;133(2):469–478.

119. Honma Y., Arai I., Hashimoto Y., Futaki N., Sugimoto M., Tanaka M. et al. Prostaglandin D2 and prostaglandin E2 accelerate the recovery of cutaneous barrier disruption induced by mechanical scratching in mice. Eur J Pharmacol. 2005;518(1):56–62.

120. Honma Y., Arai I., Sakurai T., Futaki N., Hashimoto Y., Sugimoto M. et al. Effects of indomethacin and dexamethasone on mechanical scratching-induced cutaneous barrier disruption in mice. Exp Dermatol. 2006;15(7):501–508.

121. Honma Y., Arai I., Futaki N., Hashimoto Y., Sugimoto M., Sakurai T. et al. Cyclooxygenase-1 inhibition delays recovery of the cutaneous barrier disruption caused by mechanical scratching in mice. Br J Dermatol. 2007;156(6):1178–1187.

122. Malhotra A., Shafiq N., Rajagopalan S., Dogra S., Malhotra S. Thiazolidinediones for plaque psoriasis: a systematic review and meta-analysis. Evid Based Med. 2012;17(6):171–176.

123. Demerjian M., Choi E. H., Man M. Q., Chang S., Elias P. M., Feingold K. R. Activators of PPARs and LXR decrease the adverse effects of exogenous glucocorticoids on the epidermis. Exp Dermatol. 2009;18(7):643–649.

124. Man M. Q., Choi E. H., Schmuth M., Crumrine D., Uchida Y., Elias P. M. et al. Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: liposensors stimulate lipid synthesis, lamellar body secretion, and post-secretory lipid processing. J Invest Dermatol. 2006;126(2):386–392.

125. Jiang Y. J., Kim P., Lu Y. F., Feingold K. R. PPARgamma activators stimulate aquaporin 3 expression in keratinocytes/epidermis. Exp Dermatol. 2011;20(7):595–599.

126. Ramot Y., Mastrofrancesco A., Camera E., Desreumaux P., Paus R., Picardo M. The role of PPARγ-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp Dermatol. 2015;24(4):245–251.

127. Mao-Qiang M., Fowler A. J., Schmuth M., Lau P., Chang S., Brown B. E. et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123(2):305–312.

128. Shreberk-Hassidim R., Ramot Y., Zlotogorski A. Janus kinase inhibitors in dermatology: A systematic review. J Am Acad Dermatol. 2017;76(4):745–753.

129. Damsky W., King B. A. JAK inhibitors in dermatology: The promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736–744.

130. Clarysse K., Pfaff C. M., Marquardt Y., Huth L., Kortekaas Krohn I., Kluwig D. et al. JAK1/3 inhibition preserves epidermal morphology in full-thickness 3D skin models of atopic dermatitis and psoriasis. J Eur Acad Dermatol Venereol. 2018 Oct 25 [Epub ahead of print].

131. Amano W., Nakajima S., Kunugi H., Numata Y., Kitoh A., Egawa G. et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136(3):667–677.


Для цитирования:


Петрунин Д.Д. Медикаментозная терапия с точки зрения влияния на морфофункциональные характеристики эпидермального барьера. Вестник дерматологии и венерологии. 2019;95(1):59-76. https://doi.org/10.25208/0042-4609-2019-95-1-59-76

For citation:


Petrunin D.D. Pharmacotherapy: Its impact on morphofunctional characteristics of the epidermal barrier. Vestnik dermatologii i venerologii. 2019;95(1):59-76. (In Russ.) https://doi.org/10.25208/0042-4609-2019-95-1-59-76

Просмотров: 123


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0042-4609 (Print)
ISSN 2313-6294 (Online)