CONGENITAL EPIDERMOLYSIS BULLOSA: PECULIARITIES OF EPIDERMIS REGENERATION AND METHODS OF TREATMENT

Cover Page

Abstract


Congenital epidermolysis bullosa is a group of hereditary skin diseases caused by mutations in the genes of structural proteins of the dermoepidermal junction of the skin, characterized by formation of blisters and erosions at the smallest mechanical trauma. In patients with severe subtypes of borderline and dystrophic epidermolysis bullosa there are long-term erosive and ulcerative defects with disruption of the healing process. Factors that impede healing include: malnutrition, anemia, pain, inactivity, local factors (presence of infection, prolonged inflammation, extensive nature of the lesion, absence of skin appendages in the affected area, deficiency or lack of formation of type VII collagen). Elimination of healing impeding factors is the main challenge in treatment of severe subtypes of bullous epidermolysis. Modern promising treatment techniques are at the stage of development and have not yet been introduced into clinical practice, and, as of today, skin care and optimal topical treatment with modern non-adhesive dressings remain the most widespread treatment methods that facilitate accelerated healing.

А. A. Kubanov

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: albanova@rambler.ru

Russian Federation Korolenko str., 3, bldg 6, Moscow, 107076, Russia

A. EH. Karamova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: fake@neicon.ru

Russian Federation Korolenko str., 3, bldg 6, Moscow, 107076, Russia

V. I. Al'banova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: fake@neicon.ru

Russian Federation Korolenko str., 3, bldg 6, Moscow, 107076, Russia

V. V. CHikin

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: fake@neicon.ru

Russian Federation Korolenko str., 3, bldg 6, Moscow, 107076, Russia

E. S. Monchakovskaya

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: fake@neicon.ru

Russian Federation Korolenko str., 3, bldg 6, Moscow, 107076, Russia

  1. Fine J. D., Eady R. A., Bauer E. A. et al. The classification of inherited epidermolysis bullosa (EB): report of the third international consensus meeting on diagnosis and classification of EB. J Am Acad Dermatol 2008; 58: 931—950.
  2. Mellerio J. E., Robertson, S. J., Bernardis C., Diem A. et al. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa — best clinical practice guidelines. Br J Dermatol 2015; 174: 56—67.
  3. Strukov A. I., Serov V. V. Patologicheskaya anatomiya. M: Litterra; 2010; 880. [Струков А. И., Серов В. В. Патологическая ана томия. М: Литтерра; 2010; 880.]
  4. Harding K., Williamson D. Wound healing. Medicine 2004; 32 (12): 4—7.
  5. Flanagan M. The physiology of wound healing. J Wound Care 2000; 9 (6): 299—300.
  6. Singer A. J., Clark R. Cutaneous Wound Healing. N Engl J Med 1999; 341: 738—746.
  7. Young A., Mcnaught C. The physiology of wound healing. Surgery 2016; 29 (10): 475—479.
  8. Micallef L., Vedrenne N., Billet F. et al. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 2012; 5 (Suppl. 1): S5.
  9. De Donatis A., Ranaldi F., Cirri P. Reciprocal control of cell proliferation and migration. Cell Commun Signal 2010; 78: 20.
  10. Bruckner-Tuderman L., Has C. Disorders of the cutaneous basement membrane zone. The paradigm of epidermolysis bullosa. Matrix Biology 2014; 33: 29—34.
  11. Hattori N., Mochizuki S., Kishi K., Nakajima T., Takaishi H., D’Armiento J., Okada Y. MMP-13 Plays a Role in Keratinocyte Migration, Angiogenesis, and Contraction in Mouse Skin Wound Healing. The American Journal of Pathology 2009; 175 (2): 533—546.
  12. Lettner, T., Lang R., Klausegger A., Hainzl S., Bauer J. W., Wally V. (2013). MMP-9 and CXCL8/IL-8 are Potential Therapeutic Targets in Epidermolysis Bullosa Simplex PLoS ONE, 8 (7) e70123.
  13. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366 (9498): 1736—1743.
  14. Choma D. P., Pumiglia K., DiPersio C. M. Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 2004; 117: 3947—59.
  15. Papini R. Management of burn injuries of various depths. BMJ 2004; 329 (7458): 158–160.
  16. Mignatti P., Rifkin D. B., Welgus H. G., Parks W. C. Proteinases and tissue remodeling. In: Clark RAF, ed. The molecular and cellular biology of wound repair. 2nd ed. New York: Plenum Press, 1996: 427—74. 18.
  17. McGrath J. A. et al. Structural variations in anchoring fibrils in dystrophic epidermolysis bullosa: correlation with type VII collagen expression. J invest Derm1993; 100 (4): 366—72.
  18. Chung H. J., Uitto J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin 2010; 28 (1): 93—105.
  19. Chen M. et al. NC1 domain of type VII collagen binds to the beta3 chain of laminin 5 via a unique subdomain within the fibronectin-like repeats. J invest Derm 1999; 112 (2): 177—83.
  20. Nyström A., Velati D., Mittapalli V. R. et al. Collagen VII plays a dual role in wound healing. J clin Invest 2013; 123 (8): 3498—3509.
  21. Kiritsi D., Has C., Bruckner-Tuderman L. Laminin 332 in junctional epidermolysis bullosa. Cell Adhesion and Migration 2013; 7 (1): 135—141.
  22. Rousselle P. et al. Laminin 5 binds the NC-1 domain of type VII collagen. J Cell Biol 1997; 138 (3): 719—728.
  23. Hartwig, B., Borm, B., Schneider H., Arin M. J., Kirfel G., Herzog V. (). Laminin-5-deficient human keratinocytes: defective adhesion results in a saltatory and inefficient mode of migration. Exp Cell Res 2007; 313 (8): 1575–1587.
  24. Nguyen B. P., Ren X. D., Schwartz M. A., Carter W. G. Ligation of integrin D3E1 by laminin 5 at the wound edge activates Rho-dependent adhesion of leading keratinocytes on collagen. J biol Chem 2001; 276: 43860—43870.
  25. Lampe P. D., Nguyen B. P., Gil S., Usui M., Olerud J., Takada Y., Carter W. G. Cellular interaction of integrin D3E1 with laminin 5 promotes gap junctional communication. J Cell Biol 1998; 143: 1735—1747.
  26. Goldfinger L., Hopkinson S., deHart G. et al. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 1999; 112: 2615—26129.
  27. Nguyen B., Gil S., Carter W. Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J Biol. Chem 2000; 275: 31896—31907.
  28. Santoro M., Gaudino G., Marchisio P. The MSP receptor regulates alpha6beta4 and alpha3beta1 integrins via 14-3-3 proteins in keratinocyte migration. Dev Cell 2003; 5: 257—271.
  29. Ryan M., Lee K., Miyashita Y., Carter W. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 1999; 145: 1309—1323.
  30. Clark R. A. F. Wound repair. Overview and general consideration, in: R. A. F. Clark (Ed.), The Molecular and Cellular Biology of Wound Repair, Plenum Press, New York 1995; 3—50.
  31. Schneider H., Mühle C., Pacho F. Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol 2006; 86 (11— 12): 701—17.
  32. Koster J., Borradori L., Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. In: Handbook of experimental pharmacology: Beissert T, Nelson C. F., editors. Berlin: Springer, 2004; 165.

Views

Abstract - 415

PDF (Russian) - 65

Refbacks

  • There are currently no refbacks.

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies