Preview

Вестник дерматологии и венерологии

Расширенный поиск

Биопленки микроорганизмов и их роль в формировании резистентности к антибактериальным препаратам

https://doi.org/10.25208/0042-4609-2015-0-2-58-62

Полный текст:

Аннотация

Изложены современные представления о механизмах формирования биопленок - надклеточной колониальнопрокариотической формы микроорганизмов, вызывающих инфекционную урогенитальную патологию. Описана роль сигнальных молекул и экстрацеллюлярного генетического материала в формировании биопленок, а также синергические и антагонистические взаимоотношения между разными видами бактерий. Представлены возможные механизмы существования прокариот, обусловливающие торпидность к проводимой терапии и приводящие к длительному хроническому течению инфекционного процесса.

Об авторах

М. Р. Рахматулина
ФГБУ «Государственный научный центр дерматовенерологии и косметологии» Минздрава России
Россия


И. А. Нечаева
ФГБУ «Государственный научный центр дерматовенерологии и косметологии» Минздрава России
Россия


Список литературы

1. Анкирская А.С., Муравьева В.В. Опыт микробиологической диагностики оппортунистических инфекций влагалища. Клин. микробиол. и антимикроб. химиотер. 2001; (2): 190-194

2. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; Apr; 15 (2): 167-93.

3. Donlan R.M. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002 Sep; 8 (9): 881-90.

4. John L. Pace, Mark E. Rupp, Roger G. Finch. Biofilms, Infection, and Antimicrobial Therapy. CRC Press. 2005.

5. Vergara-Irigaray M. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology 2008; 154: 865-877.

6. Vu B. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009; 14 (7): 2535-2554.

7. Gotz F. Staphylococcus and biofilms. Mol. Microb. 2002; 43 (6): 1367-1378.

8. Yao Y. Genomewide Analysis of Gene Expression in Staphylococcus epidermidis Biofilms: Insights into the Pathophysiology of S. epidermidis Biofilms and the Role of Phenol-Soluble Modulins in Formation of Biofilms. J Inf Dis 2005; 191: 289-298.

9. Cho S.H. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int J Antim Agen 2002; 19 (6): 570-575.

10. Diemond-Hernandez B. Production of icaADBCencoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with staphylococcal device-related infections. BMC Inf Dis 2010; 10: 68-74.

11. Petrelli D. Analysis of meticillin-susceptible and meticillinresistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J Med Microb 2008; 57: 364-372.

12. Collery M.M. Molecular typing of nasal carriage isolates of Staphylococcus aureus from an Irish university student population based on toxin gene PCR, agr locus types and multiple locus, variable number tandem repeat analysis. J Med Microb 2008; 57: 348-358.

13. Qin Z. Formation and properties of in vitro biofilms of icanegative Staphylococcus epidermidis clinical isolates. J Med Microb 2007; 56: 83-93.

14. Smith K. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microb 2008; 57: 1018-1023.

15. Luja'n A.M. Quorum-sensing-deficient (lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 2007; 153: 225-237.

16. Moons P. Bacterial interactions in biofilms. Crit Rev Microbiol 2009; 35 (3): 157-168.

17. Kirov S.M. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 2007; 153: 3264-3274.

18. Rakhimova E. Pseudomonas aeruginosa Population Biology in Chronic Obstructive Pulmonary Disease. J Inf Dis 2009; 200: 1928-1935.

19. Oglesby L.L. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 2008; 154: 1605-1615.

20. Karatan, E. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73 (2): 310-347.

21. Bhat G., Peltier M.R., Syed T.A., Drobek C.O., Saade G., Menon R. Amniotic fluid and maternal race influence responsiveness of fetal membranes to bacteria. J Reprod Immunol 2012; Dec; 96 (1-2): 68-78.

22. Garcia-Castillo M., Morosini M.I., Galvez M., Baquero F., del Campo R., Maseguer M.A. Differences in biofilm development and antibiotic susceptibility among clinical Ureaplasma urealyticum and Ureaplasma purvum isolates. J Antimicrob Chemother 2008; Nov. 62 (5): 1027-30.

23. Gostev V.V., Sidorenko S.V. Bacterial biofilms and infections. Journ Infectol 2010; 3: 4-15. [Гостев В.В., Сидоренко С.В. Бактериальные биопленки и инфекции. Журн. инфектол. 2010; (3): 4-15].

24. Berle L.M., Firsova N., Kalashnik A., Chlamydia trachomatis, Mycoplasma genitalium and Ureaplasma urealyticum in clinical and non-clinical settings, Arkhangelsk Oblast, Russia. Int J STD AIDS 2012; Nov; 23 (11): 181-4.

25. Feng C., Hung Y., Yu Y., Duan G., Dai Y. Effects on quinolone resistance due to the biofilm formation activity in Ureaplasma urealyticum. Turk J Med Sci 2015; 45 (1): 55-9.

26. Алешкин В.А., Афанасьев С.С., Афанасьев М.С., Воропаева Е.А., Кудрявцева М.В., Матвиевская И.С., Несвизиский Ю.А., Панурина Р.Л., Воробьев А.А. Микробиологические и иммунологические критерии оценки эффективности лечения уреаплазмоза у женщин. Журн. микробиол., эпидемиол. и иммунол. 2007; (2): 65-70

27. Vanya Paralanov, Li Xiao, Jin Lu. Comparative genome analysis of 19 Ureaplasma urealyticum and Ureaplasma parvum strains. Microbiology 2012; 12: 2-20.

28. Xavier J.B. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix - a modelling study. Microbiology 2005; 151: 3817-3832.

29. Das T. Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation. Appl Environ Microbiol 2010; 806-811.

30. Shafreen R.M., Muthamil S., Pandian S.K. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl Microbial Biotechnol 2014; Aug; 98 (15): 6775-85.

31. Costi D.S. Quorum Sensing: Bacteria Talk Sense. Clin Inf Dis 2008; 47: 1070-1076.

32. Keren I. Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli. J Bact 2004; 186 (24): 8172-8180.

33. Thoendel M., Horswill R. Biosynthesis of peptide signals in grampositive bacteria. Adv Appl Microbiol 2010; 71: 91-112.

34. Williams P. Quorum sensing, communication and crosskingdom signalling in the bacterial world. Microbiology 2007; 153: 3923-3938.

35. Van Alst N.E. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 2007; 75 (8): 3780-3790.

36. Silva-Dias A. Adhesion, biofilm formation, cell surface hydrophobicy, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbal 2015; 12 (6): 205.

37. Stepanyan K., Wenseleers T. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol Ecol 2015; Apr; 24 (7): 1572-83.


Для цитирования:


Рахматулина М.Р., Нечаева И.А. Биопленки микроорганизмов и их роль в формировании резистентности к антибактериальным препаратам. Вестник дерматологии и венерологии. 2015;(2):58-62. https://doi.org/10.25208/0042-4609-2015-0-2-58-62

For citation:


Rakhmatulina M.R., Nechayeva I.A. Biofilms of microorganisms and their role for the formation of resistance to anti-bacterial drugs. Vestnik dermatologii i venerologii. 2015;(2):58-62. (In Russ.) https://doi.org/10.25208/0042-4609-2015-0-2-58-62

Просмотров: 499


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0042-4609 (Print)
ISSN 2313-6294 (Online)